Zotero + Web of Science,如何做文献泛读
GP summary¶
1.1. 经典问题例子¶
Aminof, B., Giacomo, G. D., Murano, A., & Rubin, S. (2019). Planning under ltl environment specifications. In Proc. ICAPS, pp. 31-39.积木世界QNP实例
Bonet, B., Frances, G., & Geffner, H. (2019). Learning features and abstract actions for computing generalized plans. In Proc.AAAI.石头世界 \(Q_{clear}\)和G ripper例子
Bonet, B., & Geffner, H. (2015). Policies that generalize: Solving many planning problems with the same policy.. In IJCAI, pp. 2798-2804.很多经典问题
2. Generalized planning通用规划¶
Jimenez, S., Segovia-Aguas, J., & Jonsson, A. (2019). 综述A review of Generalized planning. The Knowledge Engineering Review, 34.
Aguas, J. S., Celorrio, S. J., , & Jonsson, A. (2016). Generalized planning with procedural domain control knowledge. In Proc. ICAPS.
Belle, V., & Levesque, H. J. (2016). Foundations for Generalized planning in unbounded stochastic domains. In KR, pp. 380-389.
Bercher, P., & Mattmuller, R. (2009). Solving non-deterministic planning problems with pattern database heuristics. In Proc. German Conf. on AI (KI), pp. 57-64. Springer.
Bonet, B., Palacios, H., & Geffner, H. (2009). Automatic derivation of memoryless policies and finite-state controllers using classical planners. In Proc. ICAPS-09, pp. 34-41.
Bonet, B., De Giacomo, G., Geffner, H., & Rubin, S. (2017). Generalized planning: Nondeterministic abstractions and trajectory constraints. In Proc. IJCAI.
Bonet, B., & Geffner, H. (2018). Features, projections, and representation change for Generalized planning. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 4667-4673. AAAI Press.把GP映射QNP求解
Bonet, B., Palacios, H., & Geffner, H. (2009). Automatic derivation of memoryless policies and finite-state controllers using classical planners. In ICAPS.
Bueno, T. P., de Barros, L. N., Maua, D. D., & Sanner,S. (2019). Deep reactive policies for planning in stochastic nonlinear domains. In AAAI, Vol. 33, pp. 7530-7537.
Camacho, A., Bienvenu, M., & McIlraith, S. A. (2019). Towards a unified view of ai planning and reactive synthesis. In Proc. ICAPS, pp. 58-67.
Cimatti, A., Pistore, M., Roveri, M., & Traverso, P. (2003). Weak, strong, and strong cyclic planning via symbolic model checking. Artificial Intelligence, 147(1-2), 35-84.****
Fikes, R., & Nilsson, N. (1971). STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 1, 27-120.**紧凑描述STRIPS**规划语言
Geffner, T., & Geffner, H. (2018). Compact policies for fully observable non-deterministic planning as sat. In *Proc. ICAPS.*把FOND问题转换为SAT问题求解那个github源码程序包对应论文
Hu, Y., & De Giacomo, G. (2011). Generalized planning: Synthesizing plans that work for multiple environments. In IJCAI, pp. 918-923.
Illanes, L., & McIlraith, S. A. (2019). Generalized planning via abstraction: arbitrary numbers of objects. In Proc. AAAI.
Martin, M., & Geffner, H. (2004). Learning generalized policies from planning examples using concept languages. Appl. Intelligence, 20(1), 9-19.
Muise, C. J., McIlraith, S. A., & Beck, C. (2012). Improved non-deterministic planning by exploiting state relevance. In Proc. ICAPS.
2.1. 自动规划¶
Geffner, H., & Bonet, B. (2013). A *Concise Introduction to Models and Methods for Automated Planning.* Morgan & Claypool Publishers.讲FOND问题
Ghallab, M., Nau, D., & Traverso, P. (2016). Automated planning and acting. CambridgeUniversity Press.
2.2. QNP¶
Srivastava, S., Zilberstein, S., Immerman, N., & Geffner, H. (2011). Qualitative numeric planning. In AAAI.很详细这里说FOND问题的解对应着QNP问题的解(不是互推)还有SCC算法等学长已经报告过
Srivastava, S., Immerman, N., & Zilberstein, S. (2011). A new representation and associated algorithms for Generalized planning. Artificial Intelligence, 175(2), 615-647.介绍QNP很有用地表述“GP通用规划”
3. 结合逻辑神经机¶
Garnelo, M., & Shanahan, M. (2019). Reconciling deep learning with symbolic artificial intelligence: representing objects and relations. Current Opinion in Behavioral Sciences, 29, 17-23.<--- 将深度学习与符号人工智能相结合:表示对象和关系
Toyer, S., Trevizan, F., Thiebaux, S., & Xie, L. (2018). Action schema networks: Generalised policies with deep learning. In AAAI.神经网络生成通用策略
Groshev, E., Goldstein, M., Tamar, A., Srivastava, S., & Abbeel, P. (2018). Learning generalized reactive policies using deep neural networks. In Proc. ICAPS, Vol. 2018, pp. 408-416.神经网络生成策略
Fern, A., Yoon, S., & Givan, R. (2004). Approximate policy iteration with a policy language bias. In Advances in neural information processing systems, pp. 847-854.
Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic dynamic programming for first-order MDPs. In Proc. IJCAI, Vol. 1, pp. 690-700.一阶马尔可夫过程动态编程(我觉得**MDP**马尔可夫数学化的研究过程很明显就是无缝对接**RL**强化学习的活儿)
Van Otterlo, M. (2012). Solving relational and first-order logical markov decision processes: A survey. In Wiering, M., & van Otterlo, M. (Eds.), Reinforcement Learning, pp. 253-292. Springer.
Sukhbaatar, S., Szlam, A., Synnaeve, G., Chintala, S., & Fergus, R. (2015). Mazebase: A sandbox for learning from games. arXiv preprint arXiv:1511.07401.
Wang, C., Joshi, S., & Khardon, R. (2008). First order decision diagrams for relational MDPs. Journal of Artificial Intelligence Research, 31, 431-472.一阶决策图对应求解MDP
Sanner, S., & Boutilier, C. (2009). Practical solution techniques for first-order MDPs. Artificial Intelligence, 173(5-6), 748-788.
Nebel, B. (2000). On the compilability and expressive power of propositional planning. Journal of Artificial Intelligence Research, 12, 271-315.
Khardon, R. (1999). Learning action strategies for planning domains. Artificial Intelligence, 113, 125-148.
Issakkimuthu, M., Fern, A., & Tadepalli, P. (2018). Training deep reactive policies for probabilistic planning problems. In *ICAPS.*概率规划问题
3.1.1. SAT¶
Een, N., & Sorensson, N. (2004). An extensible SAT-solver. Lecture notes in computer science, 2919, 502-518.
3.1.2. Complexity¶
Rintanen, J. (2004). Complexity of planning with partial observability.. In Proc. ICAPS, pp. 345-354.
Levesque, H. J. (2005). Planning with loops. In IJCAI, pp. 509-515.指数复杂度
Littman, M. L., Goldsmith, J., & Mundhenk, M. (1998). The computational complexity of probabilistic planning. Journal of Artificial Intelligence Research, 9, 1-36.表明QNP问题有着指数的复杂度
3.2. 其他相关的论文书籍¶
Russell, S., & Norvig, P. (2002). Artificial Intelligence: A Modern Approach. Prentice Hall. 2nd Edition.书籍人工智能
Sipser, M. (2006). Introduction to Theory of Computation (2nd edition). Thomson Course Technology, Boston, MA.教材
Cimatti, A., Roveri, M., & Traverso, P. (1998). Automatic OBDD-based 很火的一种紧凑表达结构generation of universal plans in non-deterministic domains. In Proc. AAAI-98, pp. 875-881.
Bajpai, A. N., Garg, S., et al. (2018). Transfer of deep reactive policies for mdp planning. In Advances in Neural Information Processing Systems, pp. 10965-10975.通用规划无限随机域
Helmert, M. (2002). Decidability and undecidability results for planning with numerical state variables.. In Proc. AIPS, pp. 44-53.
Hu, Y., & De Giacomo, G. (2013). A generic technique for synthesizing bounded finite-state controllers. In Proc. ICAPS.
Srivastava, S., Zilberstein, S., Gupta, A., Abbeel, P., & Russell, S. (2015). Tractability of planning with loops. In Proc. AAAI.
Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM journal on computing, 1 (2), 146-160.
Pnueli, A. (1977). The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer Science, pp. 46-57. IEEE.
Pnueli, A., & Rosner, R. (1989). On the synthesis of an asynchronous reactive module. In ICALP, pp. 652-671.